Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
3.
Front Cardiovasc Med ; 9: 929284, 2022.
Article in English | MEDLINE | ID: covidwho-2080116

ABSTRACT

Background: COVID-19 associated coagulopathy (CAC) is associated with an increase in thromboembolic events. Current guidelines recommend prophylactic heparins in the management of CAC. However, the efficacy of this strategy in the intensive care population remains uncertain. Objective: We aimed to measure thrombin generation (TG) to assess CAC in intensive care unit (ICU) patients receiving thromboprophylaxis with low molecular weight heparin (LMWH) or unfractionated heparin (UFH). In addition, we performed statistical modeling to link TG parameters to patient characteristics and clinical parameters. Lastly, we studied the potency of different anticoagulants as an alternative to LMWH treatment in ex vivo COVID-19 plasma. Patients/Methods: We included 33 patients with confirmed COVID-19 admitted at the ICU. TG was measured at least twice over the course of 6 weeks after admission. Thrombin generation parameters peak height and endogenous thrombin potential (ETP) were compared to healthy controls. Results were subsequently correlated with a patient characteristics and laboratory measurements. In vitro spiking in TG with rivaroxaban, dabigatran, argatroban and orgaran was performed and compared to LMWH. Results: Anti-Xa levels of all patients remained within the therapeutic range throughout follow-up. At baseline, the mean (SE) endogenous thrombin potential (ETP) was 1,727 (170) nM min and 1,620 (460) nM min for ellagic acid (EA) and tissue factor (TF), respectively. In line with this we found a mean (SE) peak height of 353 (45) nM and 264 (96) nM for EA and TF. Although fluctuating across the weeks of follow-up, TG parameters remained elevated despite thromboprophylaxis. In vitro comparison of LMWHs and direct thrombin inhibitors (e.g., agratroban, dabigatran) revealed a higher efficacy in reducing coagulation potential for direct thrombin inhibition in both ellagic acid (EA) and tissue factor (TF) triggered TG. Conclusion: In a sub-group of mechanically ventilated, critically ill COVID-19 patients, despite apparent adequate anti-coagulation doses evaluated by anti-Xa levels, thrombin generation potential remained high during ICU admission independent of age, sex, body mass index, APACHE II score, cardiovascular disease, and smoking status. These observations could, only partially, be explained by (anti)coagulation and thrombosis, inflammation, and multi-organ failure. Our in vitro data suggested that direct thrombin inhibition compared with LMWH might offer an alternate, more effective anticoagulant strategy in COVID-19.

4.
Diagnostics (Basel) ; 12(3)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1736850

ABSTRACT

Hemostasis is a finely tuned process of which dysregulation can lead either to bleeding or thrombotic complications. The latter is often caused by the hypercoagulable state as it is also seen in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, i.e., in COVID-19 patients. COVID-19 patients requiring hospitalization often suffer from thrombotic events that could not be predicted using routine coagulation assays. Recently, several studies have reported ROtational ThromboElastoMetry (ROTEM) as a promising tool to predict outcomes in COVID-19 patients. In this review we give an overview of ROTEM with a particular focus on the interpretation of the symmetrical clot formation curve in relation to coagulopathy in COVID-19 patients. Furthermore, we have introduced new parameters that might help to better distinguish between COVID-19 patients and outcomes.

5.
Res Pract Thromb Haemost ; 5(8): e12630, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1588882

ABSTRACT

BACKGROUND: Vaccination is the leading approach in combatting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. ChAdOx1 nCoV-19 vaccination (ChAdOx1) has been linked to a higher frequency of rare thrombosis and thromboembolism. This study aimed to explore markers related to the blood coagulation system activation and inflammation, before and after ChAdOx1 vaccination. PATIENTS AND METHODS: An observational cohort study including 40 health care workers. Whole blood samples were collected before, and either 1 or 2 days after vaccination. Activated coagulation factors in complex with their natural inhibitors were determined by custom ELISAs, including thrombin:antithrombin (T:AT), kallikrein:C1-esterase-inhibitor (PKa:C1Inh), factor(F)IXa:AT, FXa:AT, FXIaAT, FXIa:alpha-1-antitrypsin (α1AT), FXIa:C1inh, and FVIIa:AT. Plasma concentrations of interleukin (IL)-6 and IL-18 were quantified via ELISA. Analyses were performed using Wilcoxon signed-rank test. RESULTS: Levels of FVIIa:AT decreased with a median (IQR) of 707 (549-1028) pg/ml versus 598 (471-996) pg/ml, p = 0.01; and levels of IL-6 increased, 4.0 (1.9-6.8) pg/ml versus 6.9 (3.6-12.2) pg/ml, p = 0.02, after vaccination. No changes were observed in T:AT, PKa:C1Inh, FIXa:AT, FXa:AT, FXIaAT, FXIa:α1AT, FXIa:C1inh, and IL-18. CONCLUSION: ChAdOx1 leads to an inflammatory response with increased levels of IL-6. We did not observe activation of the blood coagulation system 1-2 days following vaccination.

6.
Thromb Res ; 201: 84-89, 2021 05.
Article in English | MEDLINE | ID: covidwho-1117704

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection is associated with a clear prothrombotic phenotype. Although the exact pathophysiological mechanisms are not yet fully understood, thrombosis is clearly a highly important in the prognosis and outcome of COVID-19. As such, there is a need for diagnostic analysis and quantification of the coagulation potential in these patients, both at diagnosis and follow-up. Global coagulation assays like thrombin generation (TG) and rotational thromboelastometry (ROTEM) might be suitable in estimating COVID-19 associated coagulopathy and thrombosis risk. Therefore, we aimed at validating both assays for samples with high levels of fibrinogen and in the presence of anticoagulant heparins, such as commonly observed for COVID-19 ICU patients. MATERIALS AND METHODS: Calibrated Automated Thrombography (CAT) was optimized to assess plasma thrombin generation in the presence of heparins. The final conditions with either 10 µg/mL Ellagic acid (EA) or PPP Reagent HIGH (high tissue factor; HPPH) were validated according to the EP5 protocol for within-run and between-run variability. Overall variability was well below 10%. To estimate the influences of heparins and high fibrinogen levels, CAT was performed on spiked plasma aliquots from 13 healthy volunteers. Comparable to the CAT method, tPA-ROTEM was used to validate the effect of high fibrinogen and heparins on clotting time, clot firmness and clot lysis parameters. RESULTS: Our adjusted COVID-19 assay showed a heparin dose dependent decrease in peak height and endogenous thrombin potential (ETP) for both EA and HPPH triggered variants. High fibrinogen did not alter the inhibitory effect of either LMWH or UFH, nor did it influence the peak height or ETP in any of the conditions. The tPA-ROTEM showed a significant prolongation in clotting time with the additions of heparin, which normalized with the addition of high fibrinogen. MCF was markedly increased in all hyperfibrinogenemic conditions. A trend towards increased lysis time and, thus, decreased fibrinolysis was observed. CONCLUSION: Thrombin generation and tPA-ROTEM protocols for measurements in the COVID-19 populations were adjusted and validated. The adjusted thrombin generation assay shows good sensitivity for measurements in heparin spiked plasma. High levels of fibrinogen did not alter the assay or the effectiveness of heparins as measured in this assay. t-PA ROTEM was effective in measurement of both high fibrinogen and heparins spiked samples and was sensitive to the expected relevant coagulant changes by these conditions. No clear fibrinolytic effect was observed in different conditions.


Subject(s)
COVID-19 , Thrombophilia , Blood Coagulation Tests , Heparin, Low-Molecular-Weight , Humans , RNA, Viral , SARS-CoV-2 , Thrombelastography , Thrombophilia/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL